If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14^2+48^2=c^2
We move all terms to the left:
14^2+48^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+2500=0
a = -1; b = 0; c = +2500;
Δ = b2-4ac
Δ = 02-4·(-1)·2500
Δ = 10000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10000}=100$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-100}{2*-1}=\frac{-100}{-2} =+50 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+100}{2*-1}=\frac{100}{-2} =-50 $
| 5k+6k+k=48 | | A=h(B+C)-D | | -20=7d-2d | | 4x-2(x+2)=6x | | 8+6n=7n+5 | | 3.5+x=6.2 | | -48=-8y+4y | | 0.5x+1.1=0.25x+16 | | 2a-5+a=10 | | 27=r-7 | | 125/6÷6=v | | 18=-s/6+17 | | -125/6÷6=v | | 7-8x+3x=22 | | 33=10q-7 | | g/5+4=9 | | -4d+9d=40 | | 3*5^2x=75 | | -2(x-5)=4x-2 | | 4(2x-3)=4(2x+3) | | y+3/10=7/8 | | -4=y-10/3 | | 1.6x+1.9x=14 | | 3z+4=z-10/6 | | -(-q+1)=13 | | 2-10n+3n+1=-4 | | x=134.61+0.89Y | | t/4=8/13 | | 2.5z+5=7.5 | | -2m-8=12+3m | | 4x+23=9x+12 | | a^2+1.1^2=6.1^2 |